The impact of fishing on a highly vulnerable ecosystem, the case of Juan Fernández Ridge ecosystem

TitleThe impact of fishing on a highly vulnerable ecosystem, the case of Juan Fernández Ridge ecosystem
Publication TypeJournal Article
Year of Publication2019
AuthorsPorobic, J, Fulton, EA, Parada, C, Frusher, S, Ernst, B, Manríquez, P
KeywordsBiomass, Crustaceans, Ecosystems, Fisheries science, Lobsters, Marine ecosystems, marine fish, Seamounts

The Juan Fernández Ridge (JFRE) is a vulnerable marine ecosystem (VME) located off the coast of central Chile formed by the Juan Fernández Archipelago and a group of seamounts. This ecosystem has unique biological and oceanographic features, characterized by: small geographical units, high degree of endemism with a high degree of connectivity within the system. Two fleets have historically operated in this system: a long term coastal artisanal fishery associated with the Islands, focused mainly on lobster, and a mainland based industrial demersal finfish fishery operating on the seamounts which is currently considered overexploited. The management of these fisheries has been based on a classical single-species approach to determine output controls (industrial fleet) and a mixed management system with formal and informal components (artisanal fleet). There has been growing interest in increasing the exploitation of fisheries, and modernization of the fishing fleet already operating in the JFRE. Under this scenario of increased levels of fishing exploitation and the high level of interrelation of species it might be necessary to understand the impact of these fisheries from a holistic perspective based on a ecosystem-based modeling approach. To address these challenges we developed an Atlantis end-to-end model was configured for this ecosystem. The implemented model has a high degree of skill in representing the observed trends and fluctuations of the JFRE. The model shows that the industrial fishing has a localized impact and the artisanal fisheries have a relatively low impact on the ecosystem, mainly via the lobster fishery. The model indicates that the depletion of large sized lobster has leads to an increase in the population of sea urchins. Although this increase is not sufficient, as yet, to cause substantial flow-on effects to other groups, caution is advised in case extra pressure leads the ecosystem towards a regime shift.